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Aims

1. Short term: See the evolution of the heat flux distribution and the zonal flow in a Convective
Zone (CZ) at the surface of a rotating star with a more realistic parameter.

2. Mid term: Repeat the short term project but with a Radiative Zone (RZ) below the (CZ). To
do that, I have to implement it in the code MagIC.

3. Long term : See more carefully the interactions at the interface

Introduction

A star is ball of gas whose the heat produced by the nuclear reactions has to be evacuated
from the core to the surface. Two main means of heat transport co-exist: the convection and
the radiation which give the name of these regions: the Convective Zone (CZ) and the
Radiative Zone (RZ). Both regions are more or less understood, but there is still some work to
describe properly the interface.

3D spherical model of a rotating star:
▶ The equations:
▷Navier-Stokes, mass conservation & energy

▶ Assumptions:
▷Decompose the thermodynamical variables X = (S, T , P) into a reference state X̃ and a

convective fluctuation X ′ ;i.e. X = X̃ + X ′; such that {P′, T ′} << {P̃, T̃ } and S̃ ∼ S′
▷The X̃ is a polytropic solution; i.e. hydrostatic equation in (close to) an adiabatic stratified

atmosphere.
▷Anelastic approximation: ⇐⇒ (a) density variations are allowed for the reference state;

(b) the sound waves are filtered out.
▷Adiabatic ⇐⇒ (a) Isentropic reference state

(dU = dQ + dW = TdS + dW = dW ⇒ dS = 0) (b) no heat transfer/heat’s source
(frictions); i.e. all the internal energy is transformed into a mechanical one

▶ Mean: The code MagIC [4]
▶ To model the zones: (CZ) ⇐⇒ ∇rS̃ ≤ 0 and (RZ) ⇐⇒ ∇rS̃ ≥ 0

I. Navier-Stokes, mass, energy & reference states equations [1] [2] [6] [7] [8]

Dimensionless equations (obtained with the shell radius and the viscous time as the
characteristic values):

▶ Navier-Stokes & mass conservation:
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▶ Where Qν is the viscous heating :
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▶ And σij the stress tensor.
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Non adiabatic reference states :
▶ Imposed the entropy

gradient:
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Extracted from [9]

▶ With the Maxwell relations, P̃ = ρ̃RT̃and ∇P̃ = ρ̃g̃, I have
partially solved analytically these dimensionless
equations:
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II. Numerical Methods[1][3][4]

▶ Spherical geometry⇒ The variables are decomposed by using the:
▷Chebyshev polynomials or Finite differences in the radial direction r .
▷Spherical harmonic functions for the angle components θ & ϕ .

▶ v is a solenoidal field(∇ · (ρ̃v) = 0 ⇐⇒ v) can be decomposed into:
▷ a poloidal component vP.
▷ a toroidal component vT .

▷⇒ v = ∇ ∧ ∇ ∧ (vPr) + ∇ ∧ (vTr)⇒ v =
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With L2 the Beltrami Laplacian.

▷ v has 3 unknowns and depends on only 2 scalar fields vP & vT . The radial component is
purely radial.

▶ Linear terms solved in the spectral space a contrario of the non linear ones and the
Coriolis force.

▶ Mixed explicit/implicit scheme for the time integration (Adam Bashforth scheme).

III.(a) Heat flux distribution Nu, zonal flow vϕ at the star’s surface in a (CZ)

▶ Simulations made at Ek , n, Nρ fixed; increasing the turbulence through the Ra and at a more
realistic parameter Pr = 0.1. Below, Nρ = 4.
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Heat flux distribution Nu
▶ Close to the convection’s onset,

the heat flux distribution is
constant

▶ If the Ra is increasing, there is an
anti-correlation between Nu and
vϕ . At the equator the heat flux is
very well mixed (convection &
prograde jet).

▶ If the turbulences are too strong,
the Nu becomes uniform.

Zonal flow vϕ [10]
▶ Low Ra ⇒, Prograde jet at the equator due

to a high rotation rate Ω ⇐⇒ weak Ek .
Convective cells have a ”banana cylinders
shape”. aligned with the rotation axis

▶ Because, the Coriolis force dominates the
buoyancy (if Roc > 1 )

▶ If Ra is too high, at the equator a retrograde
jet is formed (the buoyancy dominates)
because the angular momentum is
homogenized. It explains the decoupling.

▶ The bands of retro/prograde jets are due to
Roc(r).

III.(b) Influence of the Prandtl number on the Nu in a (CZ) [5]

▶ Raynaud [5] at Pr = 1; a particular value (the viscous and the thermal time have the same
weight).

▶ According to him, the heat flux contrast ∆Nu is higher when the Rol(ro) ∈ [0.1, 1] (when
the Coriolis forces dominates the inertia) and collapse sharply when the inertia dominates.

▶ I have verified it with a lower Prandtl (Pr = 0.1) which means that κ increases and the
typical convective cell length l will decrease.
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▶ At Pr = 0.1, Nρ = 4; and even at Pr = 1, Nρ = 4, there is not a sharp collapse at
Rol(ro) > 1 a contrario of the Roc(ro).

▶ By decreasing the Pr , we can see the amplitude of the heat flux distribution is weaker. It is
due to the decreasing of l.

▶ It explains also the horizontal shift observed for the Rol(ro) at Nρ = 4.

Conclusions

1. It seems that by decreasing the Prandtl number, the physical parameter which could
explain the collapse of the heat flux distribution at the surface could be the convective
Rossby number Roc and not the local Rossby one Rol(ro) as suggested by Raynaud.

Perspectives

1. Adding a (RZ) below the (CZ) and study its influence on the Nu and the vϕ .
2. See also the influence of the radiative zone’s size (through rb) , the slope of the transition

(through ζ ) in the ∇S̃, ...
3. See the spherical modes which are excited at the surface with one or 2 zones.
4. Long term: Instead to use this approach to model the interface (through ∇S̃), I would like

to take in account carefully the interactions which occur.
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